

DiMeCa - University of Cagliari - ITALY

Forest Modeling

A canopy model for WindSim 4.5

Kassel, 13rd February 2006 – WindSim Workshop

windsim

DiMeCa - University of Cagliari - ITALY

Why the need for a canopy model

windsim

DiMeCa - University of Cagliari - ITALY

windsim

DiMeCa - University of Cagliari - ITALY

- In the new canopy model of WindSim the Canopy Layer is solved by the use of porosity and drag forces (sinks of momentum)
- The canopy is described by:
 - Height of the canopy h_c
 - The canopy is discretized with a certain number of cells (uniform grid)
 - Underwood roughness length z₀
 - Porosity β
 - Drag coefficients C1 and C2

Concept of Porosity

 Given a generic volume occupied by fluid and solid phases, its porosity β is defined as the ratio

$\beta = \frac{\text{volume of fluid phases}}{\text{total volume}}$

On the concept of Darcy's velocity

 The Darcy's velocity is the velocity that would occur if the whole volume was occupied by the fluid

 $U_{D} = U \beta$

windsim

DiMeCa - University of Cagliari - ITALY

Every element of the canopy introduces in the flow a sink of momentum

 So inside the canopy the momentum RANS equations present an additional term S_i

windsim

DiMeCa - University of Cagliari - ITALY

The sinks of momentum depend upon porosity and velocity

- A classical approach (for high porous materials) is to consider the sinks of momentum proportional to the velocity
- In the Darcy's law the advective and diffusive terms are neglected, so the gravity

Sinks of momentum implemented in WindSim 4.5

Sinks of momentum [N/m³]: two terms

 $\vec{S} = -\rho C \vec{U} - \rho C \vec{U} \vec{U}$

viscous force pressure force Since the high Reynolds numbers

pressure >> viscous forces

DiMeCa - University of Cagliari - ITALY

Present model

- In the canopy model of WindSim is possible to set the drag coefficients C1 and C2 where
 - C1 is the ratio of kinetic viscosity to permeability
 - C2 is a drag coefficient multiplied by the ratio of total frontal area to volume

$$[C1] = \frac{1}{s} \qquad [C2] = \frac{1}{m} = \frac{m^2}{m^3}$$
$$C1 = \frac{\mu}{\rho k} = \frac{\nu}{k}$$
$$k[m^2]permeability$$

DiMeCa - University of Cagliari - ITALY

How to estimate the porosity k?

The relation k vs. β is proposed:

$$k = C \frac{\beta^2}{1 - \beta^2} \quad [m^2]$$

 $C = 0,0046215 \,\mathrm{m}^2$

In this way it's possible to estimate the value of the drag coefficient C1 starting from a given value of porosity β

DiMeCa - University of Cagliari - ITALY

- Please visit the site: <u>As regards the porosity</u> <u>http://www.sbe.hw.ac.uk/research/buildingeng/wind_modelling</u> /gui_windbk.html
 - (Estimates of porosities obtained from 2d windbreaks)

windsim

	Species of tree	β[%]	k [m ²]	C ₁ [1/s]
Case C	Fluid	100	-	-
	Beech	84	1,108E-02	1,394E-03
	Black cherry	77	6,731E-03	2,294E-03
Case B	Birch	55	2,004E-03	7,703E-03
	Lime	54	1,902E-03	8,116E-03
		50	1,541E-03	1,002E-02
	Ash	48	1,384E-03	1,116E-02
	Mature maple	47	1,310E-03	1,178E-02
Case A	Scots pine	38	7,800E-04	1,980E-02
	Firs	30	4,571E-04	3,378E-02
	Spruce	29	4,244E-04	3,638E-02
	Cypresses	15	1,064E-04	1,451E-01
	Solid	0	-	-

Vertical discretization

	Case A	Case B	Case C	Case D	Case E	Case F	
β	15	50	84	15	50	84	
C1	0,1451	0,01002	0,001393	0	0	0	1/s
C2	0	0	0	0,8535294	0,0055978	0,0004313	m²/m³
u _{5m}	0,17	1,79	3,23	0,15	1,73	3,21	m/s
S	2,93E-02	2,13E-02	5,35E-03	2,93E-02	2,13E-02	5,35E-03	N/m ³

1000 m

 The forest, 10 m height, has been discretized with 10 cells equally spaced.

windsim

DiMeCa - University of Cagliari - ITALY

Conclusions

- With the proposed canopy model is possible to estimate properly the dissipation of momentum and the production of turbulence inside a forest
- Further validations are needed in order to state more precise guidelines for the choice of the parameters C1 and C2 used together
 - Masts inside forests (SgurrEnergy)
 - Wind farms close to forests